Next dimension in computer chips. Research collaboration between Osaka University and the Nara Institute of Science and Technology for the first time used scanning tunneling microscopy (STM) to create images of atomically flat side-surfaces of 3D silicon crystals. This work helps semiconductor manufacturers continue to innovate while producing smaller, faster, and more energy-efficient computer chips for computers and smartphones.
Programmable camouflage material inspired by octopus skin. Engineers at Cornell University report on their invention of stretchable surfaces with programmable 3D texture morphing, a synthetic "camouflaging skin" inspired by studying and modeling the real thing in octopus and cuttlefish. For example, the material could be controllably morphed to reflect light in its 2D spaces and absorb light in its 3D shapes.
Threat detector on a ring. University of California, San Diego developed a portable, affordable, wearable sensor that would detect external chemical threats. It has two parts, an electrochemical sensor cap for detecting chemical and biological threats, and a circuit board under the cap for processing and sending data wirelessly to a smartphone or laptop. It can perform voltammetric and chronoamperometric measurements, which allow the ring to detect a wide array of chemical threats. The prototype identified explosives and organophosphate nerve agents and can be expanded to environmental and security agents.
3D printed airplane parts. Physicists from Tomsk Polytechnic University are currently working to create hydrogen-resistant products out of titanium alloys based on additive manufacturing. The production of metal products using the technology ensures less material consumption as well as possibilities to develop complex geometric products.
Dogs learn in their sleep, just like people. Researchers in Hungary trained 15 pet dogs to sit and lie down using English phrases instead of the Hungarian they already knew. Afterward, the scientists attached small electrodes to the dogs’ heads to record their brain activity while they slept. Electroencephalograms (EEGs) showed that during 3-hour naps, the dogs’ brains experienced brief, repeated moments of “slow-wave” brain activity, lasting 0.5 to 5 seconds. These bursts—called sleep spindles because they look like a train of fast, rhythmic waves on EEG recordings—occur during non-REM sleep and are known to support memory, learning, general intelligence, and healthy aging in humans and rats.