Результаты поиска по тегу «Лазер» 10 результатов

  • Физики ИТМО научились закручивать электроны для проведения ускорительных экспериментов

    Ученые ИТМО первыми в мире разработали метод закручивания электронов с помощью луча лазера. Новая методика открывает перспективы для проведения экспериментов с закрученными электронами в коллайдерах, что раньше считалось невозможным. Открытие позволит узнать больше о структуре и поведении протонов и нейтронов, из которых состоит ядро атома, а также природе кварков — одних из мельчайших известных на сегодня частиц материи. Результаты исследования были опубликованы в статье в журнале Physical Review A.

    27.09.2024

  • В ИТМО создали устройство для управления квазичастицами света и материи

    Ученые ИТМО разработали устройство для создания сцепленных частиц света и материи и управления ими. Скопления таких частиц могут стать более эффективной и экологичной заменой электричества. А само устройство можно использовать в основе архитектуры более быстрых компьютеров, средств передачи связи или интернет-сетей.

    27.06.2024

  • Рентгеновские лазерные технологии помогут узнать больше о нано- и биоматериалах

    В 2019 году в России стартовала программа развития синхротронных и нейтронных исследований. Рассчитана она до 2027 года, и за это время в стране должны появиться новые мегаустановки (установки класса Megascience): рентгеновские лазеры, синхротроны, источники нейтронов. В рамках программы Минобрнауки РФ в 2021 году объявило конкурс уже на проведение научных исследований и подготовку кадров, где команда ученых Университета ИТМО победила с проектом «Рентгеновские лазерные технологии в нано- и биоматериаловедении». Какой вклад внесут эти исследования в будущее мировой науки, рассказываем в нашем материале.

    12.10.2021

  • Лазеры для медицины: как ученые ИТМО с партнерами работают над решением проблемы медицинских титановых сплавов

    Команда лаборатории лазерных микро- и нанотехнологий и систем выиграла конкурс РНФ на проведение фундаментальных научных исследований. В рамках проекта ученые займутся разработкой комплексных методов для улучшения биосовместимости и бактериальной резистивности медицинских титановых сплавов, в частности, для дентальных имплантов.

    17.08.2020

  • Ученые с помощью лазера и частиц золота превратили оксид титана в нанокомпозитный материал для фотокатализаторов

    Оксиды различных металлов зачастую используются в роли фотокатализаторов для различных систем, например, для очистки воздуха, реакций разложения воды и даже для производства самоочищающихся покрытий для стекол и зеркал. Улучшить физико-химические свойства этих веществ можно при помощи наночастиц, после добавления которых обычный оксид превращается в наноматериал, дающий новые возможности. Однако, чтобы эффективно добавлять наночастицы, необходимо понимать процессы, происходящие при формировании нанокомпозитов, и уметь управлять ими. Ученые из Университета ИТМО совместно с коллегами из Франции и США показали, что при помощи фемтосекундного лазера можно управлять структурой и свойствами нанокомпозитного материала из диоксида титана и наночастиц золота. Работа опубликована в журнале ACS The journal of physical chemistry C.

    12.05.2020

  • Ученые Университета ИТМО нашли способ неинвазивно высвобождать лекарственный препарат из полимерных носителей внутри раковых клеток

    Концепция построена на взаимодействии резонансных полупроводниковых наночастиц — оксида железа (Fe2O3) со светом. Они способны локально нагреваться от воздействия лазера и преобразовывать получаемый свет в тепло. Если такими резонансными частицами модифицировать оболочку полимерных контейнеров (капсул), которые используются в качестве средств для доставки биоактивных веществ в клетки  и облучить их лазером, то из-за тепла произойдет деформация полимерных капсул и дистанционное высвобождение лекарств в нужном месте в нужное время. Исследование опубликовано в журнале Laser and Photonics Reviews.

    12.02.2020

  • В Университете ИТМО разработали самую простую и быструю технологию создания перовскитных нанолазеров

    Используя новый метод, всего за 5 минут ученые создают перовскитные нанолазеры, объединяющие в себе оптически активную среду и высокодобротный резонатор Фабри-Перо. Простая технология синтеза и уникальные оптические характеристики нанолазеров делают их перспективными источниками когерентного излучения для разработки оптических сенсоров высокой чувствительности, а также для сверхбыстрой передачи информации в фотонных интегральных схемах. Результаты опубликованы в журнале ACS Applied Materials & Interfaces.

    28.01.2019

  • Нобелевская премия по физике-2018: эксперты о том, как изменят мир награжденные открытия

    В Стокгольме завершилась Нобелевская неделя. На этой неделе стало известно, что Нобелевская премия по физике за 2018 год присуждена Артуру Эшкину, Жерару Муру и Донне Стрикланд за новаторские изобретения в области лазерной физики. Как отмечает Нобелевский комитет Шведской королевской академии наук, их открытия произвели революцию в лазерной физике, благодаря чему сегодня «чрезвычайно маленькие объекты и невероятно быстрые процессы можно наблюдать в новом свете». Вместе с учеными Университета ИТМО объясняем суть предложенных учеными методов и то, какие возможности они уже открыли и еще могут открыть в будущем.

    05.10.2018

  • Ученые из Университета ИТМО создали лазер для точной спутниковой навигации

    Сотрудники Научно-исследовательского центра лазерной физики Университета ИТМО создали мощный лазер с короткой длительностью импульса для использования в лунном лазерном локаторе. Локатор позволит измерять расстояние до Луны с точностью порядка нескольких миллиметров. На основе этих измерений можно будет вносить поправки в расчет небесных координат Луны, чтобы увеличить точность спутниковой навигации. Статья о новом лазере опубликована в журнале Optics Letters.

    04.10.2018

  • Ученые смогли посчитать микроскопические частицы без микроскопа

    Ученые из России и Австралии предложили простой способ подсчета микроскопических частиц в оптических материалах с помощью лазера. Пучок света, проходя через такой материал, распадается и образует на проекционном экране узор из множества ярких пятен. Исследователи обнаружили, что количество этих пятен соответствует количеству рассеивающих микроскопических частиц в материале. Таким образом, строение и форму оптических материалов можно установить без использования дорогостоящей электронной или атомно-силовой микроскопии, что, в частности, позволит проектировать оптические устройства значительно быстрее. Исследование опубликовано в журнале Scientific Reports.

    09.08.2016