Фотоны — переносчики электромагнитного излучения или кванты света — не обладают массой и электрическим зарядом. По этой причине светом относительно тяжело управлять, в отличие от, например, электронов. Их движением в электронных структурах управляют, прикладывая постоянное электрическое поле. Тем не менее, такие устройства, как наноантенны, позволяют добиться определенной степени контроля при распространении электромагнитных волн.

Одной из задач, для которых требуется «продвинутое» управление светом, является создание оптических компьютеров. В этих устройствах переносчиком информации являются не электроны, а фотоны. Использование света вместо заряженных частиц позволит в перспективе увеличить скорость передачи и обработки информации на порядки. Для реализации подобных вычислительных устройств требуются особые наноантенны, характеристиками которых можно управлять каким-либо образом, например, постоянным электрическим или магнитным полем или интенсивностью падающего света.

Рисунок 1. Схематическое изображение нелинейного рассеяния света на димере двух кремниевых частиц с изменяемой диаграммой направленности.
Рисунок 1. Схематическое изображение нелинейного рассеяния света на димере двух кремниевых частиц с изменяемой диаграммой направленности.

В ходе исследования, статья о котором опубликована в Laser & Photonics Reviews, ученые разработали устройство новой нелинейной наноантенны, которая позволяет изменять направление рассеяния света в зависимости от интенсивности падающей волны. Основой предлагаемой наноантенны служат кремниевые наночастицы, в которых под действием интенсивного лазерного излучения происходит генерация электронной плазмы. Авторы уже демонстрировали возможности таких наночастиц для нелинейного и сверхбыстрого управления светом (подробнее об этом читайте здесь). Тогда исследователям удалось управлять долей света, рассеянной вперед и назад. Теперь ученые смогли повернуть рассеянный пучок света в желаемую сторону в зависимости от интенсивности падающего света.

Для поворота диаграммы направленности наноантенны авторы воспользовались механизмом генерации плазмы в кремнии. Наноантенна представляет собой димер — две кремниевые наносферы различных диаметров. При облучении слабым лазерным пучком рассеяние света на такой антенне происходит в сторону вследствие несимметричной геометрии (голубая диаграмма на рис. 2а). Диаметры наночастиц выбраны так, что на длине волны лазера одна из них является резонансной. При облучении мощным лазерным импульсом в ней происходит интенсивная генерация электронной плазмы, что приводит к изменению оптических свойств этой частицы. Другая же частица — нерезонансная, и мощное поле лазера почти не влияет на ее свойства. Говоря грубо, при правильном выборе размеров двух частиц и параметров падающего пучка (длительности и интенсивности), размеры частиц становятся эффективно «одинаковыми», и антенна переизлучает свет вперед (красная кривая на рис. 2а).

Рисунок 2. Результаты моделирования нелинейного рассеяния света на наноантенне из двух кремниевых частиц.
Рисунок 2. Результаты моделирования нелинейного рассеяния света на наноантенне из двух кремниевых частиц.

«Существующие оптические наноантенны позволяют управлять светом в достаточно широких пределах. Однако это „умение“ обычно „зашито“ в их геометрии и материалах, из которых сделана антенна, и простое изменение этих характеристик невозможно, — комментирует аспирант МФТИ и соавтор работы Денис Баранов. — Наноантенна, которую мы разработали, позволяет динамически управлять своими свойствами. Когда вы светите на нее слабым импульсом — получаете один результат, а с сильным лазерным импульсом получаете совершенно другое поведение».

Для получения более полной картины ученые провели численное моделирование описанного механизма (рис. 2б). При облучении слабым лазерным пучком рассеяние происходит вбок и направление излучения практически не меняется за время действия импульса (голубая кривая). Если же облучать наноантенны интенсивным лазером, который приводит к генерации электронной плазмы, происходит поворот диаграммы на 20 градусов (красная кривая). Таким образом, появляется возможность отклонять в различные направлений слабый и сильный падающие импульсы.

«В данной работе мы сфокусировались на разработке наноразмерного оптического чипа размером менее чем 200×200×500 нм, то есть в разы меньше длины волны фотона, носителя информации. Новый элемент позволит менять направление распространения световых импульсов со скоростью в сотни раз большей по сравнению с электронными аналогами. Наше устройство может позволить распределять сигнал в два оптических канала с чрезвычайно коротким интервалом, что очень важно для современных систем телекоммуникации», — резюмирует старший научный сотрудник кафедры нанофотоники и метаматериалов Университета ИТМО Сергей Макаров.

Информация передается сегодня по оптоволокну с рекордными скоростями, до сотен Гбит/с. Однако современная электроника обрабатывает такой сигнал со скоростями всего лишь в несколько Гбит/с для одного элемента. Создание нелинейных оптических наноантенн позволит решить эту проблему. Быстродействие предложенной авторами антенны достигает 250 Гбит/с. Это откроет дорогу к сверхбыстрой обработке оптической информации. Нелинейная антенна, разработанная исследователями, предоставляет еще больше возможностей для управления светом на наномасштабе, которое необходимо для реализации фотонных компьютеров и различных устройств.

Пресс-служба МФТИ,
Центр научной коммуникации Университета ИТМО