Содержание

  1. Как появился Институт лазерных технологий
  2. Как строится обучение в Институте (бакалавриат, магистратура, аспирантура)
  3. Какие исследования проводят в Институте
  4. Как развивать собственные проекты в Институте

Как появился Институт лазерных технологий

Институт лазерных технологий ведет свою историю с 1963 года. Именно тогда специалист в теории электромагнитного поля и его взаимодействия с электронными пучками Константин Крылов организовал на базе ЛИТМО первую в СССР кафедру квантовой электроники. Двумя годами позже его ученик, а сейчас научный руководитель Института лазерных технологий ИТМО,Вадим Вейко создал первую университетскую лабораторию лазерных технологий, а в 1988 году и кафедру лазерных технологий. Позже оба подразделения переименовали. Кафедра квантовой электроники стала кафедрой лазерной техники и биомедицинской оптики, а кафедра лазерных технологий ― кафедрой лазерных технологий и экологического приборостроения. Вплоть до 2015 года они развивались независимо, а затем объединились.

Прочитайте также:

От первых ЭВМ до спектрографов для изучения экзопланет: развитие науки в ИТМО в одном таймлайне

Но рынок и, соответственно, требования к выпускаемым специалистам постоянно меняются. Если раньше специалисту было достаточно знаний в какой-то конкретной узкой области, то последние десять лет ему нужно развиваться сразу в нескольких направлениях. Поэтому, чтобы готовить междисциплинарных специалистов и научных сотрудников с широким набором знаний и навыков, в 2022 году из факультета наноэлектроники физико-технического мегафакультета (ФТМФ) вырос Институт лазерных технологий (ИЛТ). Кроме международной научной лаборатории лазерных микро- и нанотехнологий в нем сформировались лаборатория биомедицинских лазерных технологий и лаборатория производственных лазерных технологий.

«Сейчас рынку нужны специалисты с разными компетенциями, которые могут делать всё. Разработать, починить или усовершенствовать лазер, изобрести новую технологию или модифицировать известную, в крайнем случае, знать, где можно найти нужную, и применять лазеры для решения разных задач — от резки титана до создания наноструктур и метаповерхностей. В едином коллективе студенты могут не выбирать, хотят ли они заниматься лазерной техникой или технологией, а попробовать сразу всё. К тому же вместе мы можем эффективнее видеть “горячие” точки науки и техники, быстрее находить применение научным разработкам и выводить их на рынок и внедрять в промышленность», — рассказывает Вадим Вейко.

Вадим Вейко. Источник: ITMO.NEWS

Вадим Вейко. Источник: ITMO.NEWS

Как получить интересную и востребованную профессию

Бакалавриат. Студенты ИЛТ могут выстраивать индивидуальную траекторию обучения ― это помогает им сразу определиться с будущей профессией и сконцентрироваться на профильных дисциплинах. На выбор в бакалавриате «Лазерные технологии» дается сразу несколько треков:

  • «Я исследователь». Это направление поможет понять, какими передовыми исследованиями занимается подразделение и с чего начать научную карьеру.
  • «Я инженер». Трек полезен тем, кто хочет в будущем работать с индустриальными заказами и на производстве с применением лазеров.
  • «Я предприниматель» подойдет тем, кто хочет превратить свою разработку в стартап.
  • «Я художник» предназначен для тех, кто намерен объединить лазерные технологии и Art&Science.

«Если студенты хотят учиться в области фотоники и лазерных технологий, мы предоставим им полную возможность для реализации своих идей. Для этого мы рассказываем о научных проектах и привлекаем студентов к научно-исследовательской работе по грантам и проектам от индустрии. Также мы организовали специальные образовательные блоки ― “майноры” по soft skills и предпринимательству, если в будущем студенты захотят запустить свой стартап», — подчеркивает старший научный сотрудник ИЛТ, руководитель образовательной программы бакалавриата «Лазерные технологии» Максим Сергеев.

Максим Сергеев. Фото: Дмитрий Григорьев / ITMO.NEWS

Максим Сергеев. Фото: Дмитрий Григорьев / ITMO.NEWS

При этом независимо от направления все студенты получают базовую техническую и инженерно-техническую подготовку. На первых двух курсах бакалавриата они знакомятся с лабораториями ИЛТ и будущей профессией. Следующие два года студенты слушают специализированные курсы и проводят исследования в лабораториях и на предприятиях индустриальных партнеров программы. Так они получают опыт работы с настоящим лазерным и научно-исследовательским оборудованием, а также могут принять участие в выполнении реальных индустриальных заказов. А магистранты и аспиранты, в свою очередь, могут попробовать себя в роли их научных наставников.

Магистратура. В магистратуре «Лазерные технологии» студенты на более глубоком уровне изучают профильные дисциплины. Доступно три специализации.

  • «Лазерные микро- и нанотехнологии». Здесь студенты исследуют физико-технические основы лазерных технологий, а также их научные и высокотехнологичные применения.
  • «Лазерные биомедицинские технологии». Специализация подойдет тем, кто интересуется лазерами и биомедициной (лазерной хирургией, косметологией, стоматологией, офтальмологией и многим другим).
  • «Промышленные лазерные технологии». Уже со второго семестра студенты, выбравшие эту специализацию, могут поработать с реальными прикладными задачами и познакомиться с потенциальным работодателем еще до окончания обучения, разработав для него конкретные технологические решения и защитив свой проект как диплом.

Найти индустриального партнера для своего стартапа, стажировку и работу можно параллельно с обучением. Для этого в ИЛТ в том числе организован специальный формат ― Public talk: сотрудничество науки и бизнеса. На таких регулярных встречах студенты и сотрудники ИЛТ в формате мини-встреч обсуждают идеи и проекты с представителями компаний. Среди спикеров недавнего мероприятия — лаборатория гибкой электроники «ФлексЛаб», дистрибьютор лазерного технологического оборудования «Лазертех», производитель зарядных станций для электромобилей «Яблочков».

Прототип системы беспроводной передачи энергии, предназначенной для зарядки аккумуляторов электротранспорта мощностью 11 кВт. Фото предоставлены Новым физтехом ИТМО, фотограф Степан Лихачёв

Прототип системы беспроводной передачи энергии, предназначенной для зарядки аккумуляторов электротранспорта мощностью 11 кВт. Фото предоставлены Новым физтехом ИТМО, фотограф Степан Лихачёв

После выпуска специалисты могут претендовать на разные позиции в компаниях: от инженеров-конструкторов до операторов лазерного оборудования и технологов по лазерной обработке материалов.

Аспирантура. Также выпускники могут продолжить обучение в аспирантуре по одному из направлений:

  • «Фотоника»
  • «Лазерная физика»
  • «Оптические и оптико-электронные приборы и комплексы»

Вместе со студентами бакалавриата и магистратуры аспиранты ИЛТ развивают существующие грантовые проекты и создают новые. Для них тоже организованы разные форматы взаимодействия, которые помогают получить поддержку и оценку исследования от экспертного сообщества. Один из них ― семинары «Спроси у Вейко»:

«В узком кругу научные руководители и специалисты (из ИТМО и других организаций) обсуждают исследование аспиранта и делятся идеями, как можно улучшить работу. Например, как доказать гипотезу или как объяснить, почему получился именно этот результат в опыте. Вдобавок встречи помогают аспиранту вовремя готовиться ко всем этапам написания диссертации и быть уверенным, что он идет в правильном направлении», — отмечает заместитель директора и куратор аспирантов ИЛТ Ярослава Андреева.

Ярослава Андреева. Фото: Дмитрий Григорьев / ITMO.NEWS

Ярослава Андреева. Фото: Дмитрий Григорьев / ITMO.NEWS

Какие исследования проводятся в Институте

Команда под руководством ассистента, инженера-исследователя ИЛТ Юлии Федоровой вместе с врачами НМИЦ онкологии им. Н.Н. Петрова изучают лазерную доставку лекарств для фотодинамической терапии в лаборатории лазерных биомедицинских технологий. Это более быстрый и эффективный способ доставки фотосенсибилизаторов для борьбы с микозами (грибковыми заболеваниями) кожи и ногтей. Противогрибковые мази не всегда могут проникнуть к источнику заболевания, а противогрибковые системные препараты (таблетки) пациенту могут быть противопоказаны. С помощью лазера можно сделать микроскопические отверстия-поры в ногте или коже, затем нанести лекарственный препарат на поверхность биоткани с порами и далее воздействовать лазерным излучением на лекарство для его доставки. По словам авторов проекта, у такой методики практически нет противопоказаний, и достаточно всего 3–4 сеанса, чтобы вылечить микоз.

Также ученые занимаются исследованиями по лазерному наращиванию волос и соединению биотканей слизистой оболочки. Последняя разработка поможет защитить раны на тканях полости рта от заражения после операции.

Прочитайте также:

Наука для жизни: как разработки российских ученых и конструкторов изменили и продолжают менять нашу жизнь

Научные проекты лаборатории промышленных лазерных технологий посвящены разработке оборудования и технологий для функционализации поверхностей конструкционных и функциональных материалов. С помощью лазерного излучения материалам можно придать дополнительные свойства. Например, сделать их гидрофобными (отталкивающими воду), гидрофильными (притягивающими воду) или придать им смешанные характеристики. С помощью разрабатываемых технологий и оборудования можно улучшить антикоррозионные свойства металлов, защитить их от биообрастания, разработать незапотевающие стекла, медицинские микрофлюидные системы и многое другое.

Кроме того, ученым удалось придумать технологию, которая позволяет создавать титановые имплантаты с биосовместимыми и антибактериальными характеристиками. Эти свойства помогают избежать воспаления биотканей и отторжения имплантата после вживления в челюсть. По этой технологии на заводе Lenmiriot уже производят дентальные имплантаты. А в будущем разработка будет также полезна для проектирования имплантатов для тазовой кости и черепа.

Создание таких имплантатов было бы невозможно без поддержки сотрудников международной научной лаборатории лазерных микро- и нанотехнологий. Вместе с учеными из Австралии, Германии и Франции сотрудники ИТМО изучили, какие свойства нужно придать имплантам, какой должна быть структура поверхности и как лазерное воздействие, химический состав и геометрия поверхности влияет на бактерии биотканей. В итоге исследователи предложили дизайн поверхности импланта, который имитирует структуру костной ткани.

Также в международной научной лаборатории лазерных микро- и нанотехнологий изучают и другие фундаментальные вопросы. Например, как получить размер минимального элемента в топологии тонких пленок меньше длины волны света, какие свойства имеет лазерная плазма, зарождающаяся на границе прозрачной и непрозрачной среды и как использовать ее для обработки прозрачных материалов.

Юлия Федорова с командой и разработками лаборатории лазерных биомедицинских технологий. Фото: Дмитрий Григорьев / ITMO.NEWS

Юлия Федорова с командой и разработками лаборатории лазерных биомедицинских технологий. Фото: Дмитрий Григорьев / ITMO.NEWS

Не только наука, но и бизнес

Есть в Институте и возможности и для тех, кто хочет развивать собственные проекты и стать предпринимателем. Например, в прошлом году аспирантка Екатерина Авилова выиграла грант на миллион рублей в конкурсе «Студенческий стартап». Она развивает собственное исследование по лазерно-индуцированному осаждению меди из глубоких эвтектических растворителей, а теперь вместе с командой стартапа «ЭвтектМедь» будет создавать электронные платы. Их можно использовать для разработки химических сенсоров, гибкой электроники и противокражных RFID-меток со сложными уникальными контурами.

Прочитайте также:

Гибкая электроника и сенсоры: ученые создали более эффективный и недорогой метод для печати микрорисунков меди

Результат лазерной печати — квадратная шестеренка и фрагмент элемента SPE. Фото: Дмитрий Григорьев / ITMO.NEWS

Результат лазерной печати — квадратная шестеренка и фрагмент элемента SPE. Фото: Дмитрий Григорьев / ITMO.NEWS

А магистрант второго курса Евгений Прокофьев занимается созданием голографических защитных знаков на поверхности стали. Эта разработка поможет защитить разные устройства, например бытовую технику, от фальсификации. И в отличие от голографических наклеек, использующихся сейчас, защитные знаки будут надежнее и прослужат дольше. Свой проект Евгений планирует защитить как диплом-стартап, а в дальнейшем предложить разработку индустриальным партнерам.

Оформить идеи в проекты и найти бизнес-партнеров студентам также помогает центр трансфера ИЛТ.  Если же у обучающихся пока нет идей, а у партнеров Института при этом уже есть запрос на решение конкретной задачи, центр трансфера создаст общую команду, которая выполнит научно-исследовательские, опытно-конструкторские и технологические работы.

«Идея в том, чтобы помочь студентам, которые хотят создать стартапы, и показать им путь от готовой технологии до продукта, который можно внедрить в индустрию. Поэтому, помимо того, что студенческие стартап-команды проходят акселератор ИТМО, мы проводим для них дополнительное бесплатное обучение по запуску и развитию своего дела. На курсе рассказывают, как найти идею, управлять командой, подготовить бизнес-план и многое другое. Также мы готовы поддержать студентов и помочь им разобраться с юридическими и финансовыми тонкостями при создании стартапов», — рассказывает старший научный сотрудник, директор ИЛТ Галина Одинцова.

Галина Одинцова. Научные проекты в лаборатории лазерных биомедицинских технологий. Фото: Дмитрий Григорьев / ITMO.NEWS

Галина Одинцова. Научные проекты в лаборатории лазерных биомедицинских технологий. Фото: Дмитрий Григорьев / ITMO.NEWS

Но как отмечает Вадим Вейко, важно не только учиться и заниматься проектами и стартапами, но и мечтать. Ведь в Институте лазерных технологий можно воплотить любую мечту, даже если она кажется несбыточной:

«За свою всю жизнь я убедился, что, если о чем-то мечтать, то желание сбудется. Когда-то у меня была мечта идея рисовать картины лазером. Сначала я не знал, с чего начать, и попробовал в уме разные варианты. В конечном счете я пришел к  идее, что это можно сделать методом локального лазерного окисления поверхности металла. Другими словами создать управляемые по толщине локальные пленки оксидов, в которых возникают интерференционные цвета. Так и получилась лазерная кисть. Поэтому главное — это мечтать, фантазировать, но  и действовать!»